## Data in the Optical Domain (DoD)

DARPA/MTO Workshop
Dr. Jag Shah
March 18, 2003
Arlington, VA

#### Daniel J. Blumenthal Collaborators J. Bowers, L. Coldren, E. Hu

**Department of Electrical and Computer Engineering** 

Tel: (805)893-4168; Fax: (805) 893-5705

Email: danb@ece.ucsb.edu

Website: www.ocpn.ece.ucsb.edu

#### Optical Network Bandwidth Bottlenecks











### **All-Optical Label Swapping**



"All-Optical Label Swapping Networks and Technologies," D. J. Blumenthal, et. al., *IEEE Journal of Lightwave Technology,* Special Issue on Optical Networks, **18**(12), pp. 2058-2075, December 2000 (Invited Paper).



# Optical Packet Routing using Wavelength Conversion



"All-Optical Label Swapping for the Future Internet," D. J. Blumenthal, Optics and Photonics News, 13(3), March 2002 (invited).



#### InP SOA AOLS with Fast WC





"Optical Signal Processing for Optical Packet Switching Networks," D. J. Blumenthal, J. E. Bowers, L. Rau, H.- F. Chou, S. Rangarajan, W. Wang and H. Poulsen, *IEEE Communications Magazine*, pp. 523-529, Feb. 2003 (Invited Paper)



#### Ultrafast AOLS using Nonlinear Fiber WC



Function Layer
Photonic Layer
Electronic Layer

"Optical Signal Processing for Optical Packet Switching Networks," D. J. Blumenthal, J. E. Bowers, L. Rau, H.- F. Chou, S. Rangarajan, W. Wang and H. Poulsen, *IEEE Communications Magazine*, pp. 523-529, Feb. 2003 (Invited Paper)



#### 80 Gbps Optical Packet Routing with Label Swapping

(L. Rau et. al. OFC Postdeadline Paper, 2002)





## Multisection Lasers: SGDBR with Buried-Ridge

E. Skogan, L. A. Coldren, UCSB

- Widely-tunable SGDBR laser
  - Several active sections
    - Centered quantum well design
    - Provides 50% more modal gain than the offset quantum wells
  - Several tuning sections
    - Use the QWI process
    - provide the required tuning range









#### InP based 2D photonic crystal devices

Aimin Xing, Marcelo Darvanco, Daniel Blumenthal, Evelyn Hu

#### **Objective**

- 1. Fabrication of photonic crystal devices in InP material system
- 2. Investigate the transmission properties of the photonic crystal devices

#### **Approach**

**Crystal membrane** 

Fabricated Photonic Band gap diagram

- 1. Fabrication of photonic crystals by e-beam lithography followed by MHA RIE
- 2. Transmission measurements of photonic crystal devices using tunable laser source
- 3. Correlate the measurement results to the calculated band structure

#### Accomplishments

- 1. Developed the fabrication process for InP based 2D photonic crystal membrane devices
- 2. Identified the band gap in the range between 1500nm to 1600nm by transmission measurements

# as a 440 nm , TK as a 440 nm , TM as a 4





**Measured transmission** 

spectrum

# Status of Experimental Optical Packet Switching and Label Swapping Technology

- Where is it today
  - Basic functions of optical packet switching have been demonstrated: Optical header/label recovery, removal, processing, reinsertion, packet routing/forwarding, limited packet buffering
  - New techniques have been developed to make up for lack of optical random access and dynamic memory
  - Recent experimental work has started to address variable length packets
- What are potential technologies
  - Rapid waveguide switches, fast wavelength tuning, wavelength routers, fiber delay lines
- What are the most difficult issues
  - Optical random access buffering
  - Handling variable length packets
  - Network transmission engineering and interoperability
- Reduce cost of optics
- Move photonics from the 1950s of electronics into the VLSI era (photonic plumbing is expensive)
- Introduce regenerative functions into optical layer

